mirror of
https://github.com/moodle/moodle.git
synced 2025-08-05 00:46:50 +02:00
MDL-59265 analytics: Rename machine learning backend method
- Method names renamed to avoid interface changes once we support regression and unsupervised learning - Adding regressor interface even if not implemente - predictor interface comments expanded - Differentiate model's required accuracy from predictions quality - Add missing get_callback_boundary call - Updated datasets' metadata to allow 3rd parties to code regressors themselves - Add missing option to exception message - Include target data into the dataset regardless of being a prediction dataset or a training dataset - Explicit in_array and array_search non-strict calls - Overwrite discrete should_be_displayed implementation with the binary one - Overwrite no_teacher get_display_value as it would otherwise look wrong - Other minor fixes
This commit is contained in:
parent
b8fe16cd7c
commit
5c5cb3ee15
15 changed files with 265 additions and 51 deletions
|
@ -469,6 +469,9 @@ abstract class base {
|
||||||
return $result;
|
return $result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Add target metadata.
|
||||||
|
$this->add_target_metadata($data);
|
||||||
|
|
||||||
// Write all calculated data to a file.
|
// Write all calculated data to a file.
|
||||||
$file = $dataset->store($data);
|
$file = $dataset->store($data);
|
||||||
|
|
||||||
|
@ -636,4 +639,28 @@ abstract class base {
|
||||||
$DB->insert_record('analytics_predict_samples', $predictionrange);
|
$DB->insert_record('analytics_predict_samples', $predictionrange);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Adds target metadata to the dataset.
|
||||||
|
*
|
||||||
|
* @param array $data
|
||||||
|
* @return void
|
||||||
|
*/
|
||||||
|
protected function add_target_metadata(&$data) {
|
||||||
|
$data[0][] = 'targetcolumn';
|
||||||
|
$data[1][] = $this->analysabletarget->get_id();
|
||||||
|
if ($this->analysabletarget->is_linear()) {
|
||||||
|
$data[0][] = 'targettype';
|
||||||
|
$data[1][] = 'linear';
|
||||||
|
$data[0][] = 'targetmin';
|
||||||
|
$data[1][] = $this->analysabletarget::get_min_value();
|
||||||
|
$data[0][] = 'targetmax';
|
||||||
|
$data[1][] = $this->analysabletarget::get_max_value();
|
||||||
|
} else {
|
||||||
|
$data[0][] = 'targettype';
|
||||||
|
$data[1][] = 'discrete';
|
||||||
|
$data[0][] = 'targetclasses';
|
||||||
|
$data[1][] = json_encode($this->analysabletarget::get_classes());
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -46,6 +46,23 @@ abstract class binary extends discrete {
|
||||||
return array(0);
|
return array(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* It should always be displayed.
|
||||||
|
*
|
||||||
|
* Binary values have no subtypes by default, please overwrite if
|
||||||
|
* your indicator is adding extra features.
|
||||||
|
*
|
||||||
|
* @param float $value
|
||||||
|
* @param string $subtype
|
||||||
|
* @return bool
|
||||||
|
*/
|
||||||
|
public function should_be_displayed($value, $subtype) {
|
||||||
|
if ($subtype != false) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* get_display_value
|
* get_display_value
|
||||||
*
|
*
|
||||||
|
|
|
@ -85,7 +85,7 @@ abstract class discrete extends base {
|
||||||
*/
|
*/
|
||||||
public function get_display_value($value, $subtype = false) {
|
public function get_display_value($value, $subtype = false) {
|
||||||
|
|
||||||
$displayvalue = array_search($subtype, static::get_classes());
|
$displayvalue = array_search($subtype, static::get_classes(), false);
|
||||||
|
|
||||||
debugging('Please overwrite \core_analytics\local\indicator\discrete::get_display_value to show something ' .
|
debugging('Please overwrite \core_analytics\local\indicator\discrete::get_display_value to show something ' .
|
||||||
'different than the default "' . $displayvalue . '"', DEBUG_DEVELOPER);
|
'different than the default "' . $displayvalue . '"', DEBUG_DEVELOPER);
|
||||||
|
|
|
@ -63,7 +63,7 @@ abstract class linear extends base {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* should_be_displayed
|
* Show only the main feature.
|
||||||
*
|
*
|
||||||
* @param float $value
|
* @param float $value
|
||||||
* @param string $subtype
|
* @param string $subtype
|
||||||
|
|
|
@ -231,7 +231,7 @@ abstract class base extends \core_analytics\calculable {
|
||||||
*/
|
*/
|
||||||
protected function min_prediction_score() {
|
protected function min_prediction_score() {
|
||||||
// The default minimum discards predictions with a low score.
|
// The default minimum discards predictions with a low score.
|
||||||
return \core_analytics\model::MIN_SCORE;
|
return \core_analytics\model::PREDICTION_MIN_SCORE;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
|
@ -78,7 +78,7 @@ abstract class binary extends discrete {
|
||||||
throw new \moodle_exception('errorpredictionformat', 'analytics');
|
throw new \moodle_exception('errorpredictionformat', 'analytics');
|
||||||
}
|
}
|
||||||
|
|
||||||
if (in_array($value, $this->ignored_predicted_classes())) {
|
if (in_array($value, $this->ignored_predicted_classes(), false)) {
|
||||||
// Just in case, if it is ignored the prediction should not even be recorded but if it would, it is ignored now,
|
// Just in case, if it is ignored the prediction should not even be recorded but if it would, it is ignored now,
|
||||||
// which should mean that is it nothing serious.
|
// which should mean that is it nothing serious.
|
||||||
return self::OUTCOME_VERY_POSITIVE;
|
return self::OUTCOME_VERY_POSITIVE;
|
||||||
|
|
|
@ -42,17 +42,18 @@ abstract class discrete extends base {
|
||||||
*/
|
*/
|
||||||
public function is_linear() {
|
public function is_linear() {
|
||||||
// Not supported yet.
|
// Not supported yet.
|
||||||
throw new \coding_exception('Sorry, this version\'s prediction processors only support targets with binary values.');
|
throw new \coding_exception('Sorry, this version\'s prediction processors only support targets with binary values.' .
|
||||||
|
' You can write your own and overwrite this method though.');
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Is the provided class one of this target valid classes?
|
* Is the provided class one of this target valid classes?
|
||||||
*
|
*
|
||||||
* @param string $class
|
* @param mixed $class
|
||||||
* @return bool
|
* @return bool
|
||||||
*/
|
*/
|
||||||
protected static function is_a_class($class) {
|
protected static function is_a_class($class) {
|
||||||
return (in_array($class, static::get_classes()));
|
return (in_array($class, static::get_classes(), false));
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -99,7 +100,7 @@ abstract class discrete extends base {
|
||||||
throw new \moodle_exception('errorpredictionformat', 'analytics');
|
throw new \moodle_exception('errorpredictionformat', 'analytics');
|
||||||
}
|
}
|
||||||
|
|
||||||
if (in_array($value, $this->ignored_predicted_classes())) {
|
if (in_array($value, $this->ignored_predicted_classes(), false)) {
|
||||||
// Just in case, if it is ignored the prediction should not even be recorded.
|
// Just in case, if it is ignored the prediction should not even be recorded.
|
||||||
return self::OUTCOME_OK;
|
return self::OUTCOME_OK;
|
||||||
}
|
}
|
||||||
|
@ -138,15 +139,16 @@ abstract class discrete extends base {
|
||||||
* Returns the predicted classes that will be ignored.
|
* Returns the predicted classes that will be ignored.
|
||||||
*
|
*
|
||||||
* Better be keen to add more than less classes here, the callback is always able to discard some classes. As an example
|
* Better be keen to add more than less classes here, the callback is always able to discard some classes. As an example
|
||||||
* a target with classes 'grade 0-3', 'grade 3-6', 'grade 6-8' and 'grade 8-10' is interested in flagging both 'grade 0-3'
|
* a target with classes 'grade 0-3', 'grade 3-6', 'grade 6-8' and 'grade 8-10' is interested in flagging both 'grade 6-8'
|
||||||
* and 'grade 3-6'. On the other hand, a target like dropout risk with classes 'yes', 'no' may just be interested in 'yes'.
|
* and 'grade 8-10' as ignored. On the other hand, a target like dropout risk with classes 'yes', 'no' may just be
|
||||||
|
* interested in 'yes'.
|
||||||
*
|
*
|
||||||
* @return array List of values that will be ignored (array keys are ignored).
|
* @return array List of values that will be ignored (array keys are ignored).
|
||||||
*/
|
*/
|
||||||
protected function ignored_predicted_classes() {
|
protected function ignored_predicted_classes() {
|
||||||
// Coding exception as this will only be called if this target have non-linear values.
|
// Coding exception as this will only be called if this target have non-linear values.
|
||||||
throw new \coding_exception('Overwrite ignored_predicted_classes() and return an array with the classes that triggers ' .
|
throw new \coding_exception('Overwrite ignored_predicted_classes() and return an array with the classes that should not ' .
|
||||||
'the callback');
|
'trigger the callback');
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -162,10 +164,8 @@ abstract class discrete extends base {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!$this->is_linear()) {
|
if (in_array($predictedvalue, $this->ignored_predicted_classes())) {
|
||||||
if (in_array($predictedvalue, $this->ignored_predicted_classes())) {
|
return false;
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
|
|
|
@ -42,7 +42,8 @@ abstract class linear extends base {
|
||||||
*/
|
*/
|
||||||
public function is_linear() {
|
public function is_linear() {
|
||||||
// Not supported yet.
|
// Not supported yet.
|
||||||
throw new \coding_exception('Sorry, this version\'s prediction processors only support targets with binary values.');
|
throw new \coding_exception('Sorry, this version\'s prediction processors only support targets with binary values.' .
|
||||||
|
' You can write your own and overwrite this method though.');
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -52,7 +53,7 @@ abstract class linear extends base {
|
||||||
* @param string $ignoredsubtype
|
* @param string $ignoredsubtype
|
||||||
* @return int
|
* @return int
|
||||||
*/
|
*/
|
||||||
public function get_calculated_outcome($value, $ignoredsubtype = false) {
|
public function get_calculation_outcome($value, $ignoredsubtype = false) {
|
||||||
|
|
||||||
// This is very generic, targets will probably be interested in overwriting this.
|
// This is very generic, targets will probably be interested in overwriting this.
|
||||||
$diff = static::get_max_value() - static::get_min_value();
|
$diff = static::get_max_value() - static::get_min_value();
|
||||||
|
@ -67,7 +68,7 @@ abstract class linear extends base {
|
||||||
*
|
*
|
||||||
* @return float
|
* @return float
|
||||||
*/
|
*/
|
||||||
protected static function get_max_value() {
|
public static function get_max_value() {
|
||||||
// Coding exception as this will only be called if this target have linear values.
|
// Coding exception as this will only be called if this target have linear values.
|
||||||
throw new \coding_exception('Overwrite get_max_value() and return the target max value');
|
throw new \coding_exception('Overwrite get_max_value() and return the target max value');
|
||||||
}
|
}
|
||||||
|
@ -77,11 +78,33 @@ abstract class linear extends base {
|
||||||
*
|
*
|
||||||
* @return float
|
* @return float
|
||||||
*/
|
*/
|
||||||
protected static function get_min_value() {
|
public static function get_min_value() {
|
||||||
// Coding exception as this will only be called if this target have linear values.
|
// Coding exception as this will only be called if this target have linear values.
|
||||||
throw new \coding_exception('Overwrite get_min_value() and return the target min value');
|
throw new \coding_exception('Overwrite get_min_value() and return the target min value');
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Should the model callback be triggered?
|
||||||
|
*
|
||||||
|
* @param mixed $predictedvalue
|
||||||
|
* @param float $predictionscore
|
||||||
|
* @return bool
|
||||||
|
*/
|
||||||
|
public function triggers_callback($predictedvalue, $predictionscore) {
|
||||||
|
|
||||||
|
if (!parent::triggers_callback($predictedvalue, $predictionscore)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// People may not want to set a boundary.
|
||||||
|
$boundary = $this->get_callback_boundary();
|
||||||
|
if (!empty($boundary) && floatval($predictedvalue) < $boundary) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the minimum value that triggers the callback.
|
* Returns the minimum value that triggers the callback.
|
||||||
*
|
*
|
||||||
|
|
|
@ -371,12 +371,9 @@ abstract class base {
|
||||||
$metadata = array(
|
$metadata = array(
|
||||||
'timesplitting' => $this->get_id(),
|
'timesplitting' => $this->get_id(),
|
||||||
// If no target the first column is the sampleid, if target the last column is the target.
|
// If no target the first column is the sampleid, if target the last column is the target.
|
||||||
|
// This will need to be updated when we support unsupervised learning models.
|
||||||
'nfeatures' => count(current($dataset)) - 1
|
'nfeatures' => count(current($dataset)) - 1
|
||||||
);
|
);
|
||||||
if ($target) {
|
|
||||||
$metadata['targetclasses'] = json_encode($target::get_classes());
|
|
||||||
$metadata['targettype'] = ($target->is_linear()) ? 'linear' : 'discrete';
|
|
||||||
}
|
|
||||||
|
|
||||||
// The first 2 samples will be used to store metadata about the dataset.
|
// The first 2 samples will be used to store metadata about the dataset.
|
||||||
$metadatacolumns = [];
|
$metadatacolumns = [];
|
||||||
|
|
|
@ -80,6 +80,11 @@ class model {
|
||||||
*/
|
*/
|
||||||
const MIN_SCORE = 0.7;
|
const MIN_SCORE = 0.7;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Minimum prediction confidence (from 0 to 1) to accept a prediction as reliable enough.
|
||||||
|
*/
|
||||||
|
const PREDICTION_MIN_SCORE = 0.6;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Maximum standard deviation between different evaluation repetitions to consider that evaluation results are stable.
|
* Maximum standard deviation between different evaluation repetitions to consider that evaluation results are stable.
|
||||||
*/
|
*/
|
||||||
|
@ -524,8 +529,13 @@ class model {
|
||||||
$outputdir = $this->get_output_dir(array('evaluation', $dashestimesplittingid));
|
$outputdir = $this->get_output_dir(array('evaluation', $dashestimesplittingid));
|
||||||
|
|
||||||
// Evaluate the dataset, the deviation we accept in the results depends on the amount of iterations.
|
// Evaluate the dataset, the deviation we accept in the results depends on the amount of iterations.
|
||||||
$predictorresult = $predictor->evaluate($this->model->id, self::ACCEPTED_DEVIATION,
|
if ($this->get_target()->is_linear()) {
|
||||||
|
$predictorresult = $predictor->evaluate_regression($this->get_unique_id(), self::ACCEPTED_DEVIATION,
|
||||||
self::EVALUATION_ITERATIONS, $dataset, $outputdir);
|
self::EVALUATION_ITERATIONS, $dataset, $outputdir);
|
||||||
|
} else {
|
||||||
|
$predictorresult = $predictor->evaluate_classification($this->get_unique_id(), self::ACCEPTED_DEVIATION,
|
||||||
|
self::EVALUATION_ITERATIONS, $dataset, $outputdir);
|
||||||
|
}
|
||||||
|
|
||||||
$result->status = $predictorresult->status;
|
$result->status = $predictorresult->status;
|
||||||
$result->info = $predictorresult->info;
|
$result->info = $predictorresult->info;
|
||||||
|
@ -599,7 +609,11 @@ class model {
|
||||||
$samplesfile = $datasets[$this->model->timesplitting];
|
$samplesfile = $datasets[$this->model->timesplitting];
|
||||||
|
|
||||||
// Train using the dataset.
|
// Train using the dataset.
|
||||||
$predictorresult = $predictor->train($this->get_unique_id(), $samplesfile, $outputdir);
|
if ($this->get_target()->is_linear()) {
|
||||||
|
$predictorresult = $predictor->train_regression($this->get_unique_id(), $samplesfile, $outputdir);
|
||||||
|
} else {
|
||||||
|
$predictorresult = $predictor->train_classification($this->get_unique_id(), $samplesfile, $outputdir);
|
||||||
|
}
|
||||||
|
|
||||||
$result = new \stdClass();
|
$result = new \stdClass();
|
||||||
$result->status = $predictorresult->status;
|
$result->status = $predictorresult->status;
|
||||||
|
@ -678,8 +692,12 @@ class model {
|
||||||
$result->predictions = $this->get_static_predictions($indicatorcalculations);
|
$result->predictions = $this->get_static_predictions($indicatorcalculations);
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
// Prediction process runs on the machine learning backend.
|
// Estimation and classification processes run on the machine learning backend side.
|
||||||
$predictorresult = $predictor->predict($this->get_unique_id(), $samplesfile, $outputdir);
|
if ($this->get_target()->is_linear()) {
|
||||||
|
$predictorresult = $predictor->estimate($this->get_unique_id(), $samplesfile, $outputdir);
|
||||||
|
} else {
|
||||||
|
$predictorresult = $predictor->classify($this->get_unique_id(), $samplesfile, $outputdir);
|
||||||
|
}
|
||||||
$result->status = $predictorresult->status;
|
$result->status = $predictorresult->status;
|
||||||
$result->info = $predictorresult->info;
|
$result->info = $predictorresult->info;
|
||||||
$result->predictions = $this->format_predictor_predictions($predictorresult);
|
$result->predictions = $this->format_predictor_predictions($predictorresult);
|
||||||
|
|
|
@ -43,34 +43,67 @@ interface predictor {
|
||||||
public function is_ready();
|
public function is_ready();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Train the provided dataset.
|
* Train this processor classification model using the provided supervised learning dataset.
|
||||||
*
|
*
|
||||||
* @param int $modelid
|
* @param string $uniqueid
|
||||||
* @param \stored_file $dataset
|
* @param \stored_file $dataset
|
||||||
* @param string $outputdir
|
* @param string $outputdir
|
||||||
* @return \stdClass
|
* @return \stdClass
|
||||||
*/
|
*/
|
||||||
public function train($modelid, \stored_file $dataset, $outputdir);
|
public function train_classification($uniqueid, \stored_file $dataset, $outputdir);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Predict the provided dataset samples.
|
* Classifies the provided dataset samples.
|
||||||
*
|
*
|
||||||
* @param int $modelid
|
* @param string $uniqueid
|
||||||
* @param \stored_file $dataset
|
* @param \stored_file $dataset
|
||||||
* @param string $outputdir
|
* @param string $outputdir
|
||||||
* @return \stdClass
|
* @return \stdClass
|
||||||
*/
|
*/
|
||||||
public function predict($modelid, \stored_file $dataset, $outputdir);
|
public function classify($uniqueid, \stored_file $dataset, $outputdir);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* evaluate
|
* Evaluates this processor classification model using the provided supervised learning dataset.
|
||||||
*
|
*
|
||||||
* @param int $modelid
|
* @param string $uniqueid
|
||||||
* @param float $maxdeviation
|
* @param float $maxdeviation
|
||||||
* @param int $niterations
|
* @param int $niterations
|
||||||
* @param \stored_file $dataset
|
* @param \stored_file $dataset
|
||||||
* @param string $outputdir
|
* @param string $outputdir
|
||||||
* @return \stdClass
|
* @return \stdClass
|
||||||
*/
|
*/
|
||||||
public function evaluate($modelid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir);
|
public function evaluate_classification($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Train this processor regression model using the provided supervised learning dataset.
|
||||||
|
*
|
||||||
|
* @param string $uniqueid
|
||||||
|
* @param \stored_file $dataset
|
||||||
|
* @param string $outputdir
|
||||||
|
* @return \stdClass
|
||||||
|
*/
|
||||||
|
public function train_regression($uniqueid, \stored_file $dataset, $outputdir);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Estimates linear values for the provided dataset samples.
|
||||||
|
*
|
||||||
|
* @param string $uniqueid
|
||||||
|
* @param \stored_file $dataset
|
||||||
|
* @param mixed $outputdir
|
||||||
|
* @return void
|
||||||
|
*/
|
||||||
|
public function estimate($uniqueid, \stored_file $dataset, $outputdir);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Evaluates this processor regression model using the provided supervised learning dataset.
|
||||||
|
*
|
||||||
|
* @param string $uniqueid
|
||||||
|
* @param float $maxdeviation
|
||||||
|
* @param int $niterations
|
||||||
|
* @param \stored_file $dataset
|
||||||
|
* @param string $outputdir
|
||||||
|
* @return \stdClass
|
||||||
|
*/
|
||||||
|
public function evaluate_regression($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -64,6 +64,23 @@ class no_teacher extends \core_analytics\local\indicator\binary {
|
||||||
return array('context', 'course');
|
return array('context', 'course');
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Reversed because the indicator is in 'negative' and the max returned value means teacher present.
|
||||||
|
*
|
||||||
|
* @param float $value
|
||||||
|
* @param string $subtype
|
||||||
|
* @return string
|
||||||
|
*/
|
||||||
|
public function get_display_value($value, $subtype = false) {
|
||||||
|
|
||||||
|
// No subtypes for binary values by default.
|
||||||
|
if ($value == -1) {
|
||||||
|
return get_string('yes');
|
||||||
|
} else if ($value == 1) {
|
||||||
|
return get_string('no');
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* calculate_sample
|
* calculate_sample
|
||||||
*
|
*
|
||||||
|
|
|
@ -73,14 +73,14 @@ class processor implements \core_analytics\predictor {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Trains a machine learning algorithm with the provided training set.
|
* Train this processor classification model using the provided supervised learning dataset.
|
||||||
*
|
*
|
||||||
* @param string $uniqueid
|
* @param string $uniqueid
|
||||||
* @param \stored_file $dataset
|
* @param \stored_file $dataset
|
||||||
* @param string $outputdir
|
* @param string $outputdir
|
||||||
* @return \stdClass
|
* @return \stdClass
|
||||||
*/
|
*/
|
||||||
public function train($uniqueid, \stored_file $dataset, $outputdir) {
|
public function train_classification($uniqueid, \stored_file $dataset, $outputdir) {
|
||||||
|
|
||||||
// Output directory is already unique to the model.
|
// Output directory is already unique to the model.
|
||||||
$modelfilepath = $outputdir . DIRECTORY_SEPARATOR . self::MODEL_FILENAME;
|
$modelfilepath = $outputdir . DIRECTORY_SEPARATOR . self::MODEL_FILENAME;
|
||||||
|
@ -134,14 +134,14 @@ class processor implements \core_analytics\predictor {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Predicts the provided samples
|
* Classifies the provided dataset samples.
|
||||||
*
|
*
|
||||||
* @param string $uniqueid
|
* @param string $uniqueid
|
||||||
* @param \stored_file $dataset
|
* @param \stored_file $dataset
|
||||||
* @param string $outputdir
|
* @param string $outputdir
|
||||||
* @return \stdClass
|
* @return \stdClass
|
||||||
*/
|
*/
|
||||||
public function predict($uniqueid, \stored_file $dataset, $outputdir) {
|
public function classify($uniqueid, \stored_file $dataset, $outputdir) {
|
||||||
|
|
||||||
// Output directory is already unique to the model.
|
// Output directory is already unique to the model.
|
||||||
$modelfilepath = $outputdir . DIRECTORY_SEPARATOR . self::MODEL_FILENAME;
|
$modelfilepath = $outputdir . DIRECTORY_SEPARATOR . self::MODEL_FILENAME;
|
||||||
|
@ -199,7 +199,7 @@ class processor implements \core_analytics\predictor {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Evaluates the provided dataset.
|
* Evaluates this processor classification model using the provided supervised learning dataset.
|
||||||
*
|
*
|
||||||
* During evaluation we need to shuffle the evaluation dataset samples to detect deviated results,
|
* During evaluation we need to shuffle the evaluation dataset samples to detect deviated results,
|
||||||
* if the dataset is massive we can not load everything into memory. We know that 2GB is the
|
* if the dataset is massive we can not load everything into memory. We know that 2GB is the
|
||||||
|
@ -216,7 +216,7 @@ class processor implements \core_analytics\predictor {
|
||||||
* @param string $outputdir
|
* @param string $outputdir
|
||||||
* @return \stdClass
|
* @return \stdClass
|
||||||
*/
|
*/
|
||||||
public function evaluate($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir) {
|
public function evaluate_classification($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir) {
|
||||||
$fh = $dataset->get_content_file_handle();
|
$fh = $dataset->get_content_file_handle();
|
||||||
|
|
||||||
// The first lines are var names and the second one values.
|
// The first lines are var names and the second one values.
|
||||||
|
@ -351,6 +351,47 @@ class processor implements \core_analytics\predictor {
|
||||||
return $resultobj;
|
return $resultobj;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Train this processor regression model using the provided supervised learning dataset.
|
||||||
|
*
|
||||||
|
* @throws new \coding_exception
|
||||||
|
* @param string $uniqueid
|
||||||
|
* @param \stored_file $dataset
|
||||||
|
* @param string $outputdir
|
||||||
|
* @return \stdClass
|
||||||
|
*/
|
||||||
|
public function train_regression($uniqueid, \stored_file $dataset, $outputdir) {
|
||||||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Estimates linear values for the provided dataset samples.
|
||||||
|
*
|
||||||
|
* @throws new \coding_exception
|
||||||
|
* @param string $uniqueid
|
||||||
|
* @param \stored_file $dataset
|
||||||
|
* @param mixed $outputdir
|
||||||
|
* @return void
|
||||||
|
*/
|
||||||
|
public function estimate($uniqueid, \stored_file $dataset, $outputdir) {
|
||||||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Evaluates this processor regression model using the provided supervised learning dataset.
|
||||||
|
*
|
||||||
|
* @throws new \coding_exception
|
||||||
|
* @param string $uniqueid
|
||||||
|
* @param float $maxdeviation
|
||||||
|
* @param int $niterations
|
||||||
|
* @param \stored_file $dataset
|
||||||
|
* @param string $outputdir
|
||||||
|
* @return \stdClass
|
||||||
|
*/
|
||||||
|
public function evaluate_regression($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir) {
|
||||||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the Phi correlation coefficient.
|
* Returns the Phi correlation coefficient.
|
||||||
*
|
*
|
||||||
|
|
|
@ -79,7 +79,7 @@ class processor implements \core_analytics\predictor {
|
||||||
* @param string $outputdir
|
* @param string $outputdir
|
||||||
* @return \stdClass
|
* @return \stdClass
|
||||||
*/
|
*/
|
||||||
public function train($uniqueid, \stored_file $dataset, $outputdir) {
|
public function train_classification($uniqueid, \stored_file $dataset, $outputdir) {
|
||||||
|
|
||||||
// Obtain the physical route to the file.
|
// Obtain the physical route to the file.
|
||||||
$datasetpath = $this->get_file_path($dataset);
|
$datasetpath = $this->get_file_path($dataset);
|
||||||
|
@ -113,14 +113,14 @@ class processor implements \core_analytics\predictor {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns predictions for the provided dataset samples.
|
* Classifies the provided dataset samples.
|
||||||
*
|
*
|
||||||
* @param string $uniqueid
|
* @param string $uniqueid
|
||||||
* @param \stored_file $dataset
|
* @param \stored_file $dataset
|
||||||
* @param string $outputdir
|
* @param string $outputdir
|
||||||
* @return \stdClass
|
* @return \stdClass
|
||||||
*/
|
*/
|
||||||
public function predict($uniqueid, \stored_file $dataset, $outputdir) {
|
public function classify($uniqueid, \stored_file $dataset, $outputdir) {
|
||||||
|
|
||||||
// Obtain the physical route to the file.
|
// Obtain the physical route to the file.
|
||||||
$datasetpath = $this->get_file_path($dataset);
|
$datasetpath = $this->get_file_path($dataset);
|
||||||
|
@ -154,7 +154,7 @@ class processor implements \core_analytics\predictor {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Evaluates the provided dataset.
|
* Evaluates this processor classification model using the provided supervised learning dataset.
|
||||||
*
|
*
|
||||||
* @param string $uniqueid
|
* @param string $uniqueid
|
||||||
* @param float $maxdeviation
|
* @param float $maxdeviation
|
||||||
|
@ -163,7 +163,7 @@ class processor implements \core_analytics\predictor {
|
||||||
* @param string $outputdir
|
* @param string $outputdir
|
||||||
* @return \stdClass
|
* @return \stdClass
|
||||||
*/
|
*/
|
||||||
public function evaluate($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir) {
|
public function evaluate_classification($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir) {
|
||||||
|
|
||||||
// Obtain the physical route to the file.
|
// Obtain the physical route to the file.
|
||||||
$datasetpath = $this->get_file_path($dataset);
|
$datasetpath = $this->get_file_path($dataset);
|
||||||
|
@ -195,6 +195,47 @@ class processor implements \core_analytics\predictor {
|
||||||
return $resultobj;
|
return $resultobj;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Train this processor regression model using the provided supervised learning dataset.
|
||||||
|
*
|
||||||
|
* @throws new \coding_exception
|
||||||
|
* @param string $uniqueid
|
||||||
|
* @param \stored_file $dataset
|
||||||
|
* @param string $outputdir
|
||||||
|
* @return \stdClass
|
||||||
|
*/
|
||||||
|
public function train_regression($uniqueid, \stored_file $dataset, $outputdir) {
|
||||||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Estimates linear values for the provided dataset samples.
|
||||||
|
*
|
||||||
|
* @throws new \coding_exception
|
||||||
|
* @param string $uniqueid
|
||||||
|
* @param \stored_file $dataset
|
||||||
|
* @param mixed $outputdir
|
||||||
|
* @return void
|
||||||
|
*/
|
||||||
|
public function estimate($uniqueid, \stored_file $dataset, $outputdir) {
|
||||||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Evaluates this processor regression model using the provided supervised learning dataset.
|
||||||
|
*
|
||||||
|
* @throws new \coding_exception
|
||||||
|
* @param string $uniqueid
|
||||||
|
* @param float $maxdeviation
|
||||||
|
* @param int $niterations
|
||||||
|
* @param \stored_file $dataset
|
||||||
|
* @param string $outputdir
|
||||||
|
* @return \stdClass
|
||||||
|
*/
|
||||||
|
public function evaluate_regression($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir) {
|
||||||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the path to the dataset file.
|
* Returns the path to the dataset file.
|
||||||
*
|
*
|
||||||
|
|
|
@ -134,7 +134,7 @@ class insight implements \renderable, \templatable {
|
||||||
* Returns a CSS class from the calculated value outcome.
|
* Returns a CSS class from the calculated value outcome.
|
||||||
*
|
*
|
||||||
* @param \core_analytics\calculable $calculable
|
* @param \core_analytics\calculable $calculable
|
||||||
* @param mixed $value
|
* @param float $value
|
||||||
* @param string|false $subtype
|
* @param string|false $subtype
|
||||||
* @return string
|
* @return string
|
||||||
*/
|
*/
|
||||||
|
@ -159,8 +159,8 @@ class insight implements \renderable, \templatable {
|
||||||
default:
|
default:
|
||||||
throw new \coding_exception('The outcome returned by ' . get_class($calculable) . '::get_calculation_outcome is ' .
|
throw new \coding_exception('The outcome returned by ' . get_class($calculable) . '::get_calculation_outcome is ' .
|
||||||
'not one of the accepted values. Please use \core_analytics\calculable::OUTCOME_VERY_POSITIVE, ' .
|
'not one of the accepted values. Please use \core_analytics\calculable::OUTCOME_VERY_POSITIVE, ' .
|
||||||
'\core_analytics\calculable::OUTCOME_OK, \core_analytics\calculable::OUTCOME_NEGATIVE or ' .
|
'\core_analytics\calculable::OUTCOME_OK, \core_analytics\calculable::OUTCOME_NEGATIVE, ' .
|
||||||
'\core_analytics\calculable::OUTCOME_VERY_NEGATIVE');
|
'\core_analytics\calculable::OUTCOME_VERY_NEGATIVE or \core_analytics\calculable::OUTCOME_NEUTRAL');
|
||||||
}
|
}
|
||||||
return $style;
|
return $style;
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue